SIC 2824
ORGANIC FIBERS—NONCELLULOSIC



Establishments primarily engaged in manufacturing noncellulosic, or synthetic, fibers comprise the manmade organic fibers industry. The fibers are created in the form of monofilament, yarn, staple, or tow suitable for further manufacturing on spindles, looms, knitting machines, or other textile processing equipment. Textile glass fibers and cellulosic manmade fibers, such as rayon and acetate, are classified elsewhere.

NAICS Code(s)

325222 (Noncellulosic Organic Fiber Manufacturing)

Industry Snapshot

Although experimental organic fibers existed as early as 1913, the first commercially viable synthetics were invented during the 1930s and 1940s. Explosive industry growth occurred mid-century as new fibers, such as polyester, made synthetic materials a strong part of American life. In the late 1970s and early 1980s, U.S. industry participants were generating more than 3.5 million tons of fibers annually, worth more than $8 billion.

Rapid industry expansion subsided in the 1980s, as important sectorsof the fiber business matured. Although production tonnage and revenues increased slightly throughout the decade, profit margins were confined by stagnant export growth and a rising tide of imports in the form of apparel and textiles. Environmental regulations and economic recession in the late 1980s and early 1990s suppressed profits further as manufacturers scrambled to consolidate and reduce costs.

By the late 1990s, the worldwide production of synthetic fibers was 27.8 million tons. However, a major geographic shift in production had occurred in the 1980s and 1990s. Asian production had surged to a total of about 15.8 million metric tons, while North American production had increased very modestly to a total of 5.4 million metric tons. Production for all of Europe totaled 5.1 million metric tons in the late 1990s, but output in eastern Europe had plummeted from a peak of 1.9 million metric tons in the late 1980s to only 800,000 metric tons in the late 1990s.

The value of industry shipments declined steadily throughout the late 1990s, from $11.94 billion in 1997 to $10.67 billion in 1999. By 2000 this had fallen to $10.02 billion. Employment in the industry also declined steadily from 37,085 in 1997 to 30,727 in 2000.

Organization and Structure

Manmade fibers offer a less expensive substitute for many natural fibers, such as cotton, wool, and silk. In addition, many synthetic fibers have greater durability, hold their shape better, and are more uniform than natural fibers. Products created with manmade fibers typically afford greater resistance to aging and breakdown as a result of exposure to the elements. Because they can be modified to create a great variety of filaments with different physical properties and grades, synthetics provide great flexibility for manufacturers of apparel and textiles.

The two categories of manmade fibers are cellulosic and synthetic. Cellulosic fibers include such products as rayon, acetate, and triacetate, which are derived from modified wood pulp that has been dissolved in a liquid. Synthetic fibers are derived from molecules containing various combinations of carbon, hydrogen, nitrogen, and oxygen. Examples of products in this group are nylon, olefin, polyester, and spandex.

Synthetic fibers accounted for about 93 percent of U.S. manmade fiber output in 1998. Manmade fibers constituted approximately 25 percent of the larger U.S. synthetic materials industry, which also encompassed plastics and rubbers. Synthetic materials, in turn, represented about 25 percent of the overall $300-billion per year U.S. chemical industry.

Nearly 70 U.S. firms competed in this highly consolidated industry during the late 1990s. Even among the handful of competitors, earnings were top-heavy; the combined revenues of the top five firms in the business were nearly four times greater than the aggregate sales of the next five largest companies. Moreover, the majority of the largest 20 establishments employed fewer than 200 workers, compared with between 10,000 and 20,000 employees at each of the top few companies. Extremely high start-up capital requirements, entrenched market leaders, and proprietary technology necessary to produce high-margin fibers discouraged potential market entrants from joining this exceptionally competitive business.

The largest U.S. market for synthetic fibers during the 1990s was floor covering manufacturers. This sector consumed almost 35 percent of fiber output to create carpeting for commercial, institutional, and consumer applications. Apparel producers commanded about 25 percent of industry production during this time, and makers of various home textile products controlled 8 percent of output. Industrial products and miscellaneous consumer goods, representing 25 percent of consumption, included such items as tire reinforcements, rope, surgical and sanitary supplies, fiberfill, electrical insulation, and plastic reinforcements. Nearly 8 percent of total output was shipped to other countries.

Production Process. Synthetic fibers are extremely long, threadlike molecules composed of hundreds of thousands of atoms strung together in chains. They typically originate from petroleum-based chemicals, which must first be converted into a liquid state by either being dissolved into a solution or by melting. The free-moving molecules that form the liquid are then extruded through small holes called spinnerets. The fine strands of liquid that emerge from the spinnerets are hardened to form long, silk-like filaments.

The three most popular spinning processes are known as dry, wet, and melt. In dry spinning, the fiberforming substance is dissolved in a solvent, extruded through a spinneret, and then exposed to hot air. The heat causes the solvent to evaporate from the fiber, leaving a solid filament. Wet spinning works in a similar manner, except that the extrusion is jettisoned into a coagulating bath, which causes the fiber to harden as a result of chemical or physical change. Melt spinning is accomplished by simply melting and extruding a substance that dries upon contact with the air.

During the spinning process, the filament can be manipulated to result in various physical properties and forms. This manipulation determines such attributes as drapability, softness, elasticity, perceived coolness or warmth, stiffness, roughness, and resilience. Fibers that are formed to have a dog-bone or lobed cross-section, for instance, result in fabrics with greater density, while flat fibers give fabrics a rough feel.

After spinning, fibers go through a stretching and orientation process. During this procedure, the long molecules that constitute the fiber are pulled into alignment along the longitudinal axis of the filament. Through various techniques, the molecules can be aligned, packed, and manipulated to result in a variety of different physical characteristics. Tensile strength, dyeing properties, stretching ability, water penetrability, and resistance to breakdown are a few of the attributes that are influenced through stretching and orientation of the molecules.

Finished fibers are usually formed into monofilament, yarn, staple, or tow that can be used by other manufacturing sectors. Monofilaments are single, long strands of fiber used to create items such as nylon stockings and toothbrush bristles. Staple consists of fibers that have been cut into short lengths, usually between one and six inches. Staple can be mixed with other natural or manmade fibers to create yarns and fabrics. Tow is a fiber that is spun with hundreds of thousands of filaments bundled together into a loose rope and wound onto a spool. Tow is used like staple, but the cutting is done at a later stage to ensure that the filaments remain parallel to one another.

Products. Polyester fibers, the largest industry segment by production tonnage, constitutes about 40 percent of inorganic fibers shipments. Among other qualities, polyester sports low moisture retention, good electrical insulation characteristics, and high resistance to solvents. Nearly 80 percent of polyester fibers were used to produce textiles, apparel, and home furnishings. Eight percent of this segment was purchased by the tire industry to be used as rubber reinforcements, 7 percent was used for other industrial applications, and 5 percent went towards the production of carpeting. The majority of polyester was sold in the form of either yarn or staple. Tow represented a relatively small share of segment sales.

The second most popular synthetic fiber is nylon. This fiber, which comes in a multitude of characteristics and grades, accounts for nearly 30 percent of industry output. Nylon's advantages include a high strength-to-weight ratio, excellent recovery from deformation, and high abrasion and flex resistance. Seventy percent of nylon output was used to make carpeting, while about 20 percent was integrated into apparel and noncarpet home furnishings. Manufacturers of industrial products, such as tires and rope, represented the remaining 10 percent of this market. Most nylon was sold as yarn, though a substantial share of output took the form of tow.

Much of the remaining 30 percent of synthetic fiber revenues were derived from the sale of olefin and acrylic fibers. Olefins, which were the fastest growing segment of the industry in the early 1990s, are used to create durable carpeting and other textiles. Acrylic, the smallest volume synthetic fiber at about 5 percent of the market, is used to make clothing and home furnishings, such as blankets.

Background and Development

Evidence suggests that hemp, presumably the oldest cultivated fiber plant, was grown in China as early as 4500 B.C. Furthermore, Egyptians were already weaving and spinning linen by 3400 B.C. The spinning of silk, which provided a major impetus for the creation of artificial fibers, dates back to 2640 B.C. Flax and wool fabrics dating back to the sixth and seventh centuries B.C. have been excavated in Switzerland.

English physicist Robert Hooke was one of the first scientists to explore the possibility of extruding artificial silk, proposing a mechanical device that mimicked the silkworm. Louise Schwabe, an English weaver during the nineteenth century, was the first to successfully produce filaments from molten glass. He forced the liquid through nozzles, which caused a strand of glass to protrude and harden into a fiber. These early experiments initiated the discovery and development of manmade cellulose filaments (see SIC 2823: Cellulosic Manmade Fibers ).

Chemists carried out the first extensive research into possible methods of creating synthetic fibers after World War I. Finding that many polymers (long chains of molecules) could be dissolved in solvents, they began extruding different polymers in spinnerets. Their initial goal was to imitate rayon, a cellulosic fiber. Breakthrough synthetic fibers were produced by German chemists in 1913 and through the 1920s. Important advances occurred in 1928, for example, when vinyl chloride and vinyl acetate were used to produce fibers. This breakthrough lead to the development of the first commercially viable synthetic textile fibers in 1936.

The synthetic industry got its practical start in 1935, when American Wallace H. Carothers, working at E. I. DuPont de Nemours & Company, developed the first nylon fiber. This important discovery prompted intense research during and after World War II that resulted in many new classes of commercially useful synthetic textile filaments. The first polyester fiber, for example, was invented in 1941 by British researchers. Eastman Chemical Products Inc. of the United States introduced a vastly improved and more marketable version of that fiber in 1958. Acrylics and other polyvinyl-based fibers were developed during the 1950s.

Rapid technological advances during and after World War II paved the way for a massive synthetic fiber industry expansion during the 1960s and 1970s. Although polyester and vinyl fibers had existed for several years, public acceptance of textiles and apparel created with artificial filaments lagged behind technology. During the 1960s, however, fiber producers began making a wide variety of different products. Furthermore, they opened new markets and persuaded every feasible manufacturing sector to consider their products.

Nevertheless, the fiber industry was still dominated by cotton and other natural materials. Increased public acceptance of synthetics, combined with other influences, began to change this situation during the 1970s. For instance, pivotal synthetic fiber technology was developed for the space program, as well as for the military during the Vietnam era and the Cold War. These advances inspired new products that found favor in civilian markets. Most importantly, new production and processing techniques evolved, such as texturizing and chemical crimping, that allowed competitors to vastly improve the quality, look, and feel of their fibers.

In the early 1950s, manmade fibers accounted for about 13 percent of worldwide fiber production—synthetic fibers represented a negligible share of this total. By the late 1960s, however, manmade fibers met over 30 percent of global fiber demand, and synthetics were quickly displacing their cellulosic cousins. Boosted by postwar economic expansion, worldwide manmade fiber production rocketed from just 4.6 billion pounds in the early 1950s to over 16.2 billion pounds by 1970. Furthermore, the United States supplied a major share of global exports in this new, high-tech industry.

Continued technological advances prompted expansion of the synthetic fiber industry throughout the 1970s. While no completely new apparel and textile fibers were invented during that decade, modifications and processing advancements were numerous. Du Pont developed Antron nylon, as well as extremely lightweight, thin polypropylene fibers. Similarly, BASF introduced conductive nylon carpet fibers that reduced static. Popular anticling nylons were developed as well. "Pluscious" brushed nylon, created by Dow Chemical Co., became the preferred fiber for women's and children's sleepwear. Moreover, new polypropylene fibers with improved pigments and ultraviolet light inhibitors became popular in automotive and outdoor markets.

As industry revenues and output skyrocketed, the synthetic fiber industry adopted a more consolidated structure. The industry consisted of a multitude of innovators attempting to establish themselves as leaders in this new high-tech industry. However, commercial development of synthetic fibers proved to be an extremely capital-intensive endeavor, and research and development costs, plant construction, and ongoing fiber improvement expenditures became more than many companies could bear. As a result, many fiber making companies merged.

Polyester and nylon fabrics became more and more popular throughout the 1970s, and the industry surged ahead. By 1979, polyester accounted for 50 percent of all shipments by weight, while nylon held a 30 percent share of the market, and olefin and acrylic fibers each comprised 10 percent. Overall synthetic fiber output peaked at about 6.5 billion pounds in 1979.

Despite this impressive expansion, industry growth stalled in the 1980s. High petroleum prices helped to depress profits during the early part of the decade, and the industry faced more fundamental and long term obstacles as well. Specifically, the major innovations that had propelled growth during the previous 20 years were no longer new, and the synthetic fiber industry was entering a stage of maturity.

The declining market for polyester, the industry's mainstay, was of primary concern for struggling manufacturers in the 1980s. U.S. production jumped an encouraging 11 percent in 1983, but slipped for four consecutive years to only 3.3 billion pounds by 1986. Total production in this important segment climbed only 1 percent annually between 1982 and 1991. The other major class of fibers, nylon, reflected a similar growth pattern. From 1.9 billion pounds of output in 1982, demand rose an average of just 2 percent per year through 1991, to 2.5 billion pounds.

Olefin fibers continued to realize strong demand. That segment grew an average of 11 percent per year during the 1980s, topping 1.8 billion pounds per year by 1990, when olefin fibers accounted for over 20 percent of industry shipments. Acrylic fibers, bycontrast, plummeted from 624 million pounds sold in 1982 to just 454 million by 1991, exhibiting an average annual decline of 4 percent. Consumer preference for cottons and polyester served to reverse expansion in this sector.

During this time, stiff foreign competition in commodity fiber markets emerged. The U.S. fiber makers faced a serious challenge from Europe, Japan, and emerging industrial nations. Taiwan and Korea became particularly aggressive competitors during the decade, and significant additions to the market also came from low-cost producers in Indonesia, Bangladesh, and Malaysia.

U.S. synthetic fiber imports reached more than $900 million per year by 1992, approaching 10 percent of domestic sales. Besides cutting into domestic profits, foreign filament producers were quickly capturing global market share. As U.S. apparel and textile manufacturers moved their production facilities overseas, they often turned to cheaper foreign fiber suppliers. By 1990, the total U.S. share of global industry output fell to 18 percent, down significantly from the more than 50 percent the country held in 1950.

In an effort to combat downward price and profit pressures exerted by foreign competitors, U.S. companies scrambled to cut costs and improve their products. Massive capital investments made during the early 1990s were used to update manufacturing facilities, increase automation, and integrate new information management systems. Investments also were used to create thinner, lighter, stronger, and more versatile fibers. Despite these efforts, however, industry sales climbed an average of only 4 percent per year between 1982 and 1990, to about $11.5 billion. Total output during that period remained stagnant at about 3.2 billion pounds. Only gains in productivity helped to buoy profits for many struggling competitors.

As if heightened competition and stagnant demand were not enough of a challenge for U.S. synthetic fiber manufacturers, the country experienced economic recession from 1989 through 1991. Output slipped about 1 percent in 1989 before plunging 4 percent in 1990. Revenues fell 4 percent as well. Sales slipped again in 1991 by less than 1 percent, disappointing many who had anticipated a significant recovery. Besides increased imports of apparel and textiles, fiber makers were hit particularly hard by a depression in the construction industry, a major consumer of carpet fibers.

Supported by overall improvement in the U.S. economy, American synthetic fiber markets began to show definite signs of recovery in 1992 and 1993. The value of shipments rose 4.0 percent (2.0 percent in inflation adjusted dollars), and output climbed 3.6 percent.

The synthetic fibers industry had a mixed year in 1998, experiencing only 1 percent real growth in shipments. However, despite the economic slowdown in Asia, U.S. exports of synthetic fibers rose more than 8 percent to almost $2.4 billion. Imports trailed exports, totaling $1.7 billion. Worldwide production totaled 27.8 million metric tons, an increase of only about 2 percent, well below the annual average growth of 5 percent observed between 1978 and 1998.

Current Conditions

Into the late 1990s, manufacturers of polyester were benefiting from management and production restructuring, as well as from a slowdown in the growth of apparel imports that occurred in the late 1980s. Demand for polyester was also increasing from producers of high-performance tires and nonwoven products, such as disposable medical garments. Market demand for new polyester microfibers, which give polyester the feel of silk, encouraged manufacturers as well.

Nylon producers expected to benefit from an increase in carpet demand in the mid-1990s. Despite generally weak markets, nylon fiber makers were scrambling to fill surging demand in the automotive air bag market, a lucrative niche expected to grow 12-fold between 1995 and 2005.

The long-term health of the U.S. synthetic fiber industry was questionable as the new millennium dawned. Opportunities for impressive productivity gains seemed limited. Most competitors were already operating at low costs compared to foreign producers—particularly those in Europe and Japan—and gains allowed by automation and information technology had been largely exhausted. The value of industry shipments fell to $10.02 billion in 2000, compared to $11.94 billion in 1997.

Industry analysts expected the United States to experience a continued decline in its share of the global market. Fiber producers in such newly industrialized countries as South America and Asia were likely to dominate those regions, exerting downward pressure on global fiber prices as they competed in markets around the world. Also, increasingly stringent environmental rules and regulations reduced U.S. profit margins. To reduce toxic emissions, federal and state governments began requiring producers to meet strict manufacturing regulations (see SIC 2821: Plastics Materials and Resins. ) In order to comply, U.S. companies were spending millions of dollars retrofitting their factories and searching for cleaner production technologies.

Industry Leaders

The largest company competing in the synthetic fibers industry in the 1990s was E.I. Du Pont de Nemours of Delaware. This mammoth chemical company reported 1998 revenue of $24.8 billion, off nearly 38 percent from its performance in 1997. Its net income, however, jumped 86.3 percent to $4.48 billion. Du Pont, the inventor of nylon, remained the world's largest producer of that fiber, as well as the largest chemical company in the United States.

Throughout the 1990s, Du Pont made substantial investments to reduce emissions and to modernize its polyester production facilities and expand filament capacity. As of late 1998, the company employed a workforce of 101,000 people worldwide.

Though Du Pont did not rank as one of the top five producers of organic fibers in 1997, it was still the largest producer of nylon in North America. Also, Du Pont was the largest company in the entire chemicals industry. Its nylon, polyester, and specialty fiber businesses accounted for slightly more than 43 percent of the company's 1998 revenue. Operating in almost every corner of the globe, Du Pont earned nearly half of its 1998 revenue, or $11.67 billion, outside the United States.

Other major players in the U.S. synthetic fibers industry in the late 1990s were BASF Corp., Honeywell International Inc., and Wellman Inc., all of which were based in New Jersey. Headquartered in Mount Olive, New Jersey, BASF Corp. is the North American subsidiary of Germany's BASF AG. With more than 15,000 employees, BASF reported 1998 sales of $7.5 billion, up 13.5 percent from 1997. Formerly known as Allied Signal, Honeywell International in late 1999 acquired Honeywell and changed its name. Headquartered in Morristown, New Jersey, Honeywell employs a workforce of more than 70,000 and posted 1998 sales of $15.1 billion, up 4.5 percent from the previous year. Wellman, based in Shrewsbury, New Jersey, employed about 3,000 as of late 1998 and reported 1998 revenue of $968 million, down 10.6 percent from the previous year.

Workforce

About 31,000 workers were employed in the U.S. synthetic fiber industry in 2000. This reflected an employment decline of nearly 50 percent since 1982, when more than 60,000 workers served the industry. Although many jobs had moved overseas to factories in low-cost regions, workforce reductions were largely a result of huge productivity gains. Heavy investments in labor saving automation, for instance, resulted in the elimination of many production workers. Similarly, new information systems reduced the demand for managers and support staff.

Employment prospects for the long-term remained discouraging. Most chemical equipment controllers and machine operators, which accounted for approximately 20 percent of the industry's labor force, were likely to see their positions decline in number by 15 to 25 percent between 1990 and 2005. Nevertheless, high-paying jobs for chemists, engineers, and scientists were expected to increase by 5 to 15 percent by 2005. Moreover, experts projected that positions related to sales and marketing would surge about 17 percent. The greatest opportunities would likely arise in the fields of systems analysis and computer science, with a potential increase of more than 35 percent by 2005.

Despite unenthusiastic expectations for workforce growth, those established in the industry were relatively well-paid. In 1996, for example, the average production worker earned $15.66 per hour, significantly higher than the average for all other U.S. manufacturing sectors.

The highest paid workers in the business were generally scientists and engineers, particularly highly educated chemists involved with management or research and development. Salaries for these professionals averaged between $70,000 and $105,000 in 1998, depending on education level. For more information on chemical engineering jobs in the synthetic materials industries, see SIC 2821: Plastics Materials and Resins.

America and the World

After experiencing record production growth of 12 percent in 1997, the world synthetic fibers industry stagnated during 1998, in large part due to the widespread financial distress being experienced in Asia, Russia, and Latin America. According to Folkert Blaisse, president of Cirfs, the Brussels-based European fibers industry association, the near-term outlook is for U.S. and European producers to increase their production of industrial and specialty fibers while decreasing their commodities output. "I expect growth to be in the 3 to 5 percent range in industrial fibers and specialties," Blaisse said, adding that carbon fibers and nylon for air bag applications are the fastest growing fibers in this market segment.

Worldwide, the market for manmade fibers was estimated at $40 billion annually, of which Asia, excluding Japan, accounts for about $13 billion. The United States and Europe account for about $8 billion and $7.5 billion, respectively. In 1998, textile fibers accounted for slightly more than 80 percent of global fibers output. In this category, polyester filament grew by 6 percent in 1998, while nylon carpet yarn production climbed 2 percent, trailed by polyester staple fiber, which grew 1 percent.

In 1998, the synthetic fibers industry increased production capacity by 8 percent, but weak demand caused a drop in capacity utilization in much of the world, increasing competition and weakening prices. The synthetic fiber industry's share of world fiber consumption—including cotton and wool—climbed 1 percent in 1998 to 58 percent.

Japan's economic downturn led to a 5 percent decline in Japanese production of synthetic fibers in 1998. U.S. production declined 3 percent. The market share of both Japan and the United States declined by 1 percent. Although western Europe's fiber production dropped 2 percent, it managed to hold onto its market share. China's production of manmade fibers rose sharply in 1998, climbing 7 percent.

Research and Technology

Significant capital investments were made during the 1980s and 1990s to increase productivity and reduce hazardous manufacturing emissions. In 1990, synthetic fiber makers invested over $800 million, or about 10 percent of total revenues, back into their businesses, a figure roughly equal to three times the investment per employee of the average U.S. manufacturer and double the amount spent by the industry less than 10 years earlier.

U.S. producers sought to develop cutting-edge fibers that could deliver high profit margins and displace commodity fibers increasingly supplied by emerging industrial nations. One significant product introduction during the early 1990s was Hoechst Celanese's Polarguard high void continuous filament (HV), which provided greater warmth from lightweight, outdoor polyester fiberfill products. Similarly, the company introduced a 100 percent recyclable, all-polyester carpet system in 1993.

Also in 1993, Du Pont was improving its Micromattique MX, intended as a substitute for cotton in sportswear. Furthermore, Du Pont revealed plans to develop nylon recycling technology. Planning to market recyclable fibers by 1997, the company hoped to eventually command 85 percent of the used nylon market. Seeking to revive the struggling acrylic sector, American Cyanimid Corp. introduced MicroSupreme, a microfiber product that offered superior softness and strength as well as greater wicking and heat barrier characteristics.

Promising technological breakthroughs were also occurring outside of the private sector. Researchers at the University of Minnesota developed a method of growing poly fibers in a vertical glass tube. The system, which allowed the shape and diameter of the fiber to be altered, offered an alternative to the traditional extrusion process.

Further Reading

Alperowicz, Natasha. "Specialties Improve, But Commodities Unravel." Chemical Week, 19 May 1999.

American Fiber Manufacturers Association. "FiberFacts,"2000. Available from http://www.fibersource.com/f-info .

Chapman, Peter. "Nylon Producers Completing Year of Record Output." Chemical Market Reporter, 6 January 1997.

"Chinese Purchasing Buoys Fibres Markets." ECN-European Chemical News, 4 November 1996.

Darnay, Arsen J., ed. Manufacturing USA, 6th ed. Detroit: Gale, 1998.

Garcia, Carmen. "Mixed Bag for Man-made Fibres." ECN-European Chemical News, 20 May 1996.

Sudershan, O.P. Kharbanda. "Fibers and Intermediates Makers Lose Their Shirts; Overcapacity Drowns Strong Demand." Chemical Week, 11 September 1996.

"Synthetics Climb to Summit of Success." Daily News Record, 30 October 1995.

United States Census Bureau. 1997 Economic Census. Washington, D.C.: GPO, 1999.

United States Census Bureau. "Statistics for Industries and Industry Groups: 2000." Annual Survey of Manufacturers. February 2002. Available from http://www.census.gov .

U.S. Department of Commerce. U.S. Industry and Trade Out-look '99. Washington, D.C.: GPO, 1999.



User Contributions:

Comment about this article, ask questions, or add new information about this topic: