SIC 3291
ABRASIVE PRODUCTS



This classification covers companies that primarily make abrasive grinding wheels of natural or synthetic materials, abrasive-coated products, and other abrasive products. Companies cutting grindstones, pulpstones, and whetstones at the quarry are classified under mining industries.

NAICS Code(s)

332999 (All Other Miscellaneous Fabricated Metal Product Manufacturing)

327910 (Abrasive Product Manufacturing)

Industry Snapshot

The value of abrasive products shipments in 2000 was estimated at $4.07 billion, down from a peak of $4.7 billion in 1998. Capital investment in the sector during 1999 was estimated at $146.8 million, up from $135.4 million in 1990. By the late 1990s, there were more than 400 U.S. companies in the abrasives industry, roughly half of which employed 20 or more workers.

Among the natural abrasives used in the manufacture of abrasive products are diamonds, corundum, garnet, pumice, talc, quartz, sandstone, and certain vegetable fibers. Synthetic abrasives, first invented by Edward G. Acheson in 1891, include silicon carbide (also known as Carborundum), aluminum oxide, and boron carbide. Aluminum oxide, produced from bauxite, is used to cut hard metals, while boron carbide is one of the hardest abrasives.

This industry employed about 14,275 production workers in 2000, down from 16,400 in 1990. The industry invested about the same money per production worker as other manufacturing sectors. Annual hours worked by production workers in the industry were about the same as those worked in the manufacturing sector at large.

Organization and Structure

Ranked by sales, two-thirds of the top 30 firms in the industry were subsidiaries and divisions of larger firms, while the others were private companies. Of the industry's 75 leading companies, 84 percent were private corporations. Each of the industry's top 30 companies generated more than $10 million and employed 100 or more workers.

The top four types of abrasive products by product share, as of the early 1990s, were nonmetallic coated abrasive products and buffing and polishing wheels (45 percent); nonmetallic abrasive products, including diamond abrasives (23.7 percent); nonmetallic sized grains, powders, and flour abrasives (17.2 percent); and other nonmetallic shapes, coated or impregnated with any natural or artificial abrasive material, cloth-resin, and waterproof bond (12 percent).

The largest organization serving the industry is the Abrasive Engineering Society (AES), headquartered in Butler, Pennsylvania. The Society was founded in 1957 and has 400 members (its name changed from the American Society for Abrasive Methods in 1975). In addition to an annual technical conference and semiannual educational seminars, AES publishes the quarterly AES magazine, circulation 3,000, and otherwise promotes the exchange of technical information about abrasive materials and their uses. The industry is also served by a number of smaller organizations, including the Grinding Wheel Institute, the Abrasive Grain Association of Cleveland, the Coated Abrasives Fabricators Association, the Diamond Wheel Manufacturers Association, and the Association of Electroplaters and Surface Finishers.

Background and Development

Abrasives have been vital to making metal products since the earliest days of metallurgy in ancient times, but the modern abrasive products industry arose from the technical developments of the late nineteenth century. These developments involved not only abrasives, but also the binders used to create bonded abrasive products.

A key development for the industry was synthetic abrasives. In 1891, Edward G. Acheson synthesized silicon carbide, the first synthetic abrasive grain to attain broad, commercial success. Fused aluminum oxide abrasives, pioneered by C. B. Jacobs in the 1890s, became a commercial product by 1904. Along with the naturally occurring corundum, garnet, and diamond, silicon carbide and fused aluminum oxide dominated the abrasive products market into the 1930s. In 1938, a new technique for producing aluminum oxide was developed, resulting in the most successful abrasive grain for precision grinding that existed to date. In the 1950s, aluminum oxides were produced by nonfusion methods. Fused mixtures of aluminum and zirconium oxides also became commercially viable.

Diamonds gained widespread use as abrasives in the 1930s. This resulted from the creation of the first bonded wheels, using industrial diamonds, and was accelerated by the need for a very hard abrasive to grind tungsten carbide, which became important in the 1930s. Synthetic diamonds were produced in 1960 by General Electric. Along with cubic boron nitride, diamonds made up the hardest class of abrasives, known as "superabrasives."

In 1987, aluminum oxide and silicon carbide, the oldest synthetic abrasives, led industry output, with $104 million and $51 million in value consumed, respectively. Ranking next in order of value of materials used were natural abrasive materials ($30 million), diamond ($27 million), aluminum-zirconium oxide ($23 million), and cubic boron nitride ($7 million).

The development of binders for bonded abrasive products, including grinding and buffing wheels and flexible abrasives such as sandpaper, were as important as the development of synthetic fibers. Rubber was used to bond abrasives for grinding wheels in the 1850s. Sand, corundum, and diamond bonded by shellac were used to make grinding wheels in India in the early nineteenth century. The shellac process was utilized by the Waltham Emery Wheel Co. Rubber and shellac remained the only organic binders until synthetic resins came about in the 1920s.

Inorganic binders were developed in the late nineteenth century to simulate the properties of sandstone. Key among these were vitrified products commercialized by the Norton Co. of Massachusetts in the late 1800s. In addition to these binders, so-called "active" fillers were used to make grinding wheels. Active fillers enabled cooler grinding, increased wheel porosity, and increased the uses for grinding wheels.

Current Conditions

At the turn of the twenty-first century, abrasive product shipments showed some weakness, reflecting the recessionary economic climate. Shipments in 1999 declined to $4.36 billion, compared to the $4.72 billion level recorded in 1998. Shipments declined again in 2000, falling to $4.07 billion.

Among the abrasive materials that showed weakness during the 1990s were fused aluminum oxides and metallic abrasives. The use of silicon carbides, aluminumzirconium oxides, and superabrasives showed strength, with the most dramatic growth seen in the sale of superabrasives. U.S. firms lagged behind competitors in Europe and the Far East in using high-technology superabrasives.

Theodore L. Giese, business manager of the Abrasive Engineering Society, noted in a July 2002 issue of Industrial Distribution several new high-tech superabrasives, including aluminum oxide, cerium oxide, and silicon carbide, were starting to gain in popularity in the U.S. in the early 2000s, although the industry did need to continue working to familiarize customers with these new products. According to Giese, "These superabrasives are less consumable and last longer in both coated and bonded applications. Distributors need to help customers adjust their machining processes accordingly."

Industry Leaders

The leader in the U.S. abrasives industry at the end of the 1990s was the Norton Co. of Worcester, Massachusetts, an indirect wholly owned subsidiary of France's Compagnie de Saint-Gobain, which posted 2002 revenue of $30.2 billion. In late October 1999, Norton acquired Furon Co., a leading designer and manufacturer of engineered products made primarily from high-performance polymers. Norton changed its name to Saint-Gobain Abrasives Inc. in 2001. In addition to being the world's leading manufacturer of abrasives, Saint-Gobain Abrasives produces ceramics, plastics, and chemical process products. Worldwide, Saint-Gobain Abrasives employs 16,000 people and operates 88 production facilities in the United States and 19 other countries.

Founded in 1885, the Norton Co. was acquired in July 1990 by Saint-Gobain, which bought a majority share of the American company's common shares. The French firm also owned Norton-affiliated makers of abrasives and ceramics in Australia, Bermuda, Japan, Germany, Belgium, Luxembourg, the Netherlands, Italy, Spain, Norway, the United Kingdom, Canada, and Brazil. Norton Co. restructured after the buyout by Saint-Gobain, including $50 million in modernization investments over three years.

Workforce

From a high of 17,500 production workers in 1984, employment levels in the abrasives industry generally have trended downward, except for three or four years in the late 1980s and early 1990s when the workforce plateaued at about 16,400 workers. Employment in 2000 was estimated at about 14,275 people, compared to a workforce of 15,894 in 1997.

Research and Technology

Much of the research and new technical developments in the industry were related to the increased importance of superabrasives. In Superabrasive Grinding, J.L. Metzger summarized future areas of superabrasives development, "Our experience indicates major developments are likely to continue—possibly even to accelerate—in the following areas: (1) New, custom-designed, 'hard-to-grind' materials for an ever widening spectrum of industrial applications; (2) Creep feed grinding, also known as plunge or deep feed grinding; (3) High performance, high-speed grinding of hardened steels with CBN-wheels; (4) Form or profile grinding, in part with electroplated, in part with crushable wheels, in high removal, high precision, high surface quality applications;(5) CNC-control of production grinding machines, with, possibly, partial adaptive control optimization." Other developments regarding superabrasives included the use of chemical vapor deposition for optimal bonding of diamond coatings. Flexible belt superabrasive products were advocated over bonded wheel superabrasives for grinding ceramics because flexible products were less likely to chip and crack ceramics.

Additional areas of technical development for the industry included improvements in coated (sandpaper-like) abrasives, such as new backings, adhesives, grains and joint designs (for belt abrasives), and the use of cushioned belts. These improvements made coated abrasives faster and more economical than traditional grinding and cutting techniques for many applications. Substantial research was also undertaken to improve liquid coolants and lubricants used in many grinding operations.

An exciting development was announced in July 1999 when Norton Co. introduced a line of "engineered" abrasives. Norton claims the line, trade-named NORaX, lasts up to 10 times longer than conventional abrasives and provides higher cut rates at lower pressures. The NORaX line consists of fine-grit products in which the abrasive and bond are formed in a distinct three-dimensional structure rather than in a single layer.

Further Reading

Darnay, Arsen J., ed. Manufacturing USA, 6th ed. Farmington Hills, MI: Gale Group, 1998.

Glese, Theodore L. "A Name for Abrasives." Tooling & Production, December 2001.

"High-Tech Abrasives Increase Productivity." Industrial Distribution, July 2002.

Metzger, J.L. Superabrasive Grinding. London: Butterworth & Co., 1986.

"New Line of 'Engineered Abrasives' Offers Higher Cut Rates, Longer Life for Final Finishing; Products Can be Custom-Designed for Each Application." Business Wire, 14 July 1999.

"Norton Company Completes Tender Offer for Furon Company." PR Newswire, 26 October 1999.

United States Census Bureau. "Statistics for Industries and Industry Groups: 2000." Annual Survey of Manufacturers. February 2002. Available from http://www.census.gov .

United States Department of Commerce. 1995 Annual Survey of Manufactures: Statistics for Industry Groups and Industries. Washington, D.C.: GPO, 1997.



User Contributions:

Comment about this article, ask questions, or add new information about this topic: