SIC 3253
CERAMIC WALL AND FLOOR TILE



This industry covers establishments primarily engaged in manufacturing ceramic wall and floor tile. Establishments primarily engaged in manufacturing structural clay tile are classified in SIC 3251: Brick and Structural Clay Tile, and those manufacturing drain tile are classified in SIC 3259: Structural Clay Products, Not Elsewhere Classified.

NAICS Code(s)

327122 (Ceramic Wall and Floor Tile Manufacturing)

Industry Snapshot

Nearly 99 percent of this industry's product share is composed of glazed and unglazed floor tile and wall tile, including quarry tile and ceramic mosaic tile. Because this industry is so focused on decorative tiles, it is completely dependent on the economic health of the construction and remodeling industries, both of which thrived in the late 1990s due to a booming economy; these industries remained strong in the early 2000s, despite weakening economic conditions, thanks to historically low interest rates.

Clay, ceramic, and refractory materials such as kaolin and ball clay are the raw materials consumed in the manufacture of ceramic tiles. Other industrial chemicals, some lead based, are also used to produce ceramic tiles. Because of the industry's use and disposal of these lead-based chemicals, ceramic manufacturers are forced to comply with a wide array of Environmental Protection Agency (EPA) regulations.

This industry experienced steady growth through the late 1990s and early 2000s in terms of establishments, shipments, and employment levels. In the late 1980s, 112 establishments were present, with 53 employing 20 or more people. By the late 1990s, 142 establishments were engaged in the industry, with 58 employing 20 or more people. Leading states involved in ceramic wall and floor tile manufacturing included California, Texas, and Ohio. Shipments grew from $808 million in 1998 to $976 million in 2000. The total workforce in 2000 included 9,082 people, of whom 7,569 worked in a production capacity.

Background and Development

The evolution of clay tiles began with the introduction of roofing tiles, followed by flooring and wall tiles. The Roman historian Pliny wrote that tiles were invented in Greece on the isle of Cyprus by Cinyra, son of Agrippa. The earliest baked clay roof tiles, which date to around 1800 B.C., were excavated near Argos, Greece. The technique for production of this architectural medium was transported to southern Italy and Sicily and slowly spread throughout the rest of continental Europe. Until the Industrial Revolution when tile making was mechanized somewhat, only the very rich could afford tiled roofs and floors. This is evident in the 89 B.C. Charter of Tarentum, which stated that Senate membership and voting privileges were restricted to those men who owned housing within Tarentum, roofed with at least 1,500 tiles.

As with all industries, the Industrial Revolution forever changed the manufacture of clay tiles. By the 1850s the British led the industry in machinery innovation and heavily influenced production methods in Germany, France, Belgium, Holland, Spain, and Portugal. The introduction of machines to aid in the manufacturing process resulted in dramatically higher production levels and far greater availability of tiles.

The ceramic tile industry in the United States entered its own period of enlightenment in the 1870s. The art form in ceramic tiles developed its own uniquely American twist during the Philadelphia International Centennial Exhibition of 1876; glazed tiles were produced in the United States approximately 30 years previously, though. This progress is documented by Charles Thomas Davis, writer of Manufacture of Bricks, Tiles and Terra-Cotta, published in 1884. He wrote, "Nothing in the history of pottery is so remarkable as the progress which has been made in the manufacture of encaustic and decorative tiles, but especially in the latter, in this country since the Centennial Exposition of 1876." However, during 1870 and 1900, many American-produced tiles imitated the lifestyle in Victorian Britain, mainly because many of the artisans were trained either in Britain or directly by the British.

A new, distinctly different generation began to infuse the American ceramic tile industry in the early 1900s. These artisans were trained in American potteries and art schools and prided themselves on original, handmade tiles. The leaders in innovation were the small companies that created a broad diversity in style and technique. This period was struck a deadly blow by the Great Depression of 1929 when the construction industry shuddered to a halt, and many small tile firms were forced to close their doors.

The United States then entered World War II, and the Art Deco movement again changed the design of ceramic tiles. Screen printing became an important method of coloring tiles, and production methods were improved to lend great consistency to final tile products. The tile industry in the United States today is dominated by international conglomerates like Armstrong World Industries, which owns American Olean Tile. However, much of the artistry in the industry is still spurred by smaller tile companies.

Current Conditions

The ceramic tile industry is closely tied to the construction industry, both residential and nonresidential. Due to lower interest rates and general economic improvement, housing starts and residential remodeling grew into the late 1990s. In the latter part of the decade, ceramic tile was being used for upscale remodeling and building of bathrooms and kitchens.

In the late 1990s, shipments increased each year, following the trend toward greater consumption. Shipments grew from $808 million in 1998 to $973 million in 1999 and to $976 million in 2000. Despite a weakening economy, some analysts estimated that consumption would rise up to three percent annually through the year 2003 as historically low interest rates bolstered the residential construction industry. Imported products were also expected to continue growing in volume due to reduced tariffs under the North American Free Trade Agreement (NAFTA). Most ceramic tile was imported from Italy.

Industry Leaders

American Olean Tile Company of Lansdale, Pennsylvania, is owned by Armstrong World Industries of Lancaster, Pennsylvania. This acquisition, completed in 1988 in an effort to boost profitability, was the first of several restructuring moves for Armstrong, the largest outfit in this industry in terms of sales. Armstrong, a public company employing almost 20,000 workers in 1999, posted annual sales of almost $3.0 billion. Other key companies in this industry included Dal-Tile International of Dallas, Texas, with 1999 sales of $720.0 million, and American Biltrite Inc., of Wellesley Hills, Massachusetts, with 1998 sales of $423.9 million.

Workforce

In the late 1990s, the workforce engaged in tile manufacturing works in a highly mechanized, if not totally automated, setting or works in a small, specialty studio setting, creating highly artistic and functional tiles.

The industries producing stone, clay, and mineral products are expected to engage in downsizing efforts across a variety of occupations by the year 2000. The number of hand packers and packagers is expected by some industry observers to be reduced by nearly 25 percent, largely as a result of increasing automation. Other occupations expected to experience work force reductions of about 15 percent include assemblers and fabricators; furnace, kiln, oven, and kettle operators; crushing and mixing machine operators; precision inspectors, graders, and testers; packaging and filling machine operators; machine feeders and offbearers; hand freight, stock, and material movers; secretaries; cutting and slicing machine operators; grinders and polishers; and metal and plastic machine forming operators. Occupations expecting growth in the industry include sales workers, industrial machinery mechanics, and industrial production managers.

Research and Technology

Production methods for manufacturing ceramic tiles have greatly improved since the end of World War II. Machine decoration has increased overall output, while improved drying machines move tiles to shipping quicker. Additionally, new advances in airless and microwave drying techniques hold the promise of revolutionizing the drying process while cutting production time dramatically.

Increasing customer demand for greater variety in styles and uses of tiles has broadened the base of techniques used to produce final artistic effects. The most revolutionary of these procedures enables customers to choose designs from a computer's memory and see the finished product on a computer simulation of the customer's own bathroom. In the future computers—combined with machine tile decoration—will allow customers to design their own tiles for the manufacturer to then produce. While clay tile making continues to resemble many of the practices used 1,000 years ago, better production methods and materials lend new levels of quality and consistency to the final product.

Further Reading

"An Overview of the Economy." Ceramic Industry, August 1996.

"Blending Pottery Art With Computer Technology." Ceramic Industry, January 1996.

Earl, David. "The Feasibility of Microwave Drying Ceramic Tile." Ceramic Industry, October 1996.

Hoover's Company Capsules. Hoover's Online, 2000. Available from http://www.hoovers.com .

Jones, John. "Advances in Tile Manufacturing Technology." Ceramic Industry, April 1996.

Sheppard, Laurel. "New and Better Additives Ensure Fabrication of Quality Ceramics." Ceramic Industry, March 1997.

Stubbing, Thomas. "Airless Drying Improves Productivity and Reduces Energy." Ceramic Industry, March 1996.

United States Census Bureau. Economic Census 1997. Washington, D.C.: GPO, 1999. Available from http://www.census.gov .

United States Census Bureau. "Statistics for Industries and Industry Groups: 2000." Annual Survey of Manufacturers. February 2002. Available from http://www.census.gov .

U.S. Industry and Trade Outlook. New York: The McGraw-Hill Companies, 1999.



User Contributions:

Comment about this article, ask questions, or add new information about this topic:

CAPTCHA