SIC 2297
NONWOVEN FABRICS



Included in this category are establishments that are primarily engaged in manufacturing nonwoven fabrics by mechanical, chemical, thermal, or solvent means, or by combinations thereof. Establishments that are primarily engaged in producing woven felts are classified in SIC 2231: Broadwoven Fabric Mills, Wool (Including Dyeing and Finishing). Those producing other felts are classified in SIC 2299: Textile Goods, Not Elsewhere Classified.

A wide variety of products are made using the nonwoven process. They are generated by textile-, paper-, and/or extrusion-type processes. Nonwovens produced from textile-type processes include filtration fabrics, shoe furnishings, insulation padding, apparel components, wipes, medical dressing, medical apparel, coverstock, foodservice wipes, and automotive headliner. Nonwovens from paper-type processes include tea bags, surgical drape, apparel components, air filters, premoistened towelettes, and wet wipes. Those nonwovens produced from extrusion-type processes include geotextiles (fabrics used as road beds and erosion prevention systems), protective clothing, reinforcement fabrics, coverstock, filtration fabrics, roofing, automobile carpet backing, laundry aids, homefurnishings, and regular carpet backing. Some nonwoven products are made from a combination or hybrid of processes; these include surgical drape, wound dressing, sorbent media, medical apparel, and disposable components.

NAICS Code(s)

313230 (Nonwoven Fabric Mills)

Industry Snapshot

The nonwoven fabrics industry is one of the fastest growing sectors of the textile business. New end uses, replacing those in the woven and knitted sector, are being developed every day. It is generally immune from import competition. The production of nonwoven fabrics requires a substantial capital investment and a relatively small workforce; therefore, it is not an attractive industry for developing countries where finding employment for numerous people is a prime objective.

This category requires sophisticated, electronically controlled machinery and highly trained fabric engineers. In almost all cases where nonwoven fabrics can be substituted for woven and knitted fabrics, the result is a less expensive product. The U.S. Bureau of the Census reported that in the late 1990s a total of 193 establishments produced nonwoven fabrics. They shipped $4.7 billion worth of merchandise and spent $2.6 billion on materials in 2000.

Organization and Structure

Nonwoven is a generic term used to describe a fabric that is produced differently from a fabric made by weaving or, more broadly, a fabric that is different from traditional woven or knitted fabrics. Like all fabrics, nonwovens are planar structures that are relatively flat, flexible, and porous. Unlike traditional fabrics that are made by mechanically interlacing (weaving) or interlooping (knitting) yarns composed of fibers or filaments, nonwoven fabrics are made by mechanically, chemically, or thermally interlocking layers or networks of fibers, filaments, or yarns; interlocking fibers or filaments concurrent with their extrusion; perforating films; or forming porous films concurrent with their extrusion.

Terminology used in the trade to describe nonwoven fabrics has been coined from the method used to form the web, the technology used to bond the web into a fabric, the forming/bonding combination, and the end-use application. Web formation jargon includes dry laid, carded, crosslapped, garnetted, air laid, wet laid, cylinder formed, extruded, meltblown, cast film, coformed, and flashspun. Terms associated with bonding include mechanically bonded, stitchbonded, needlefelted, needlepunched, spunlaced, jetlaced hydroentangled, apertured, chemically bonded, resin bonded, latex bonded, powder bonded, print bonded, saturated, spray bonded, foam bonded, frothed, thermal bonded, point bonded, and ultrasonically welded. Examples of forming/bonding terms for nonwovens are card/bond and spunbond. Examples of end-use application terminology are disposables, durables, semidurables, coverstock, geotextiles, filter fabric, sorbers, medical dressing, premoistened towellete, and wipe. Also, nonwovens are often described according to their fiber content such as polyester nonwoven, rayon nonwoven, polypropylene nonwoven, cotton/polyester nonwoven, pulp/polyester nonwoven or polypropylene/pulp nonwoven. Other nonwoven terms frequently encountered include film laminate, composite, SMS, and hybrid.

Background and Development

The nonwoven fabrics industry is international in scope. The concept of making fabrics directly from fibers on needlepunch machinery achieved commercial viability in North America and Europe more than 75 years ago. Facilities for producing commercial quantities of fabrics using wet-laid technology were established in the United States during the 1930s. Large-scale commercial production facilities for chemically bonded nonwovens were placed in operation in the United States during the early 1940s and in Europe and Japan following World War II.

The first extrusion operations dedicated to making fabrics directly from polymer melts were opened in the United States and Europe during the mid- to late 1960s. By the mid-1990s about half of the worldwide nonwoven fabric production capacity was located in North America, a third in Europe, and an eighth in Japan. Capacities in these areas were expanding at annual growth rates ranging 6 to 10 percent through both productivity improvements and the installation of new facilities. In addition, new nonwoven enterprises were being launched throughout Asia and South America. At that time about twothirds of all nonwovens were made directly from fibers, and one-third were made directly from polymers.

An interesting history of technical, market, and product emphasis has occurred during the relatively short period of nonwoven industrialization. The early thrust in nonwoven usage emphasized replacing traditional woven and knitted fabrics. During this initial phase, proprietary technology was used not only to produce fabric structures that performed better than the items they were designed to replace, but it also was used when traditional fabrics could not be used. As a result, new applications and markets were established and the industry expanded.

As the industry matured and technology became publicly available, emphasis in the various sectors of the industry changed. By the mid-1990s some portions of the nonwovens industry were technology driven while others were market driven. A number of firms were proprietary technology-based while others were turn-key plant operations. Some were commodity roll-goods producers while others were more oriented to niche markets with high value-added products. Many nonwovens producers continued the quest for new markets and more opportunities to compete with traditional textiles, papers, and plastics.

Production of nonwoven roll goods in the United States climbed over the 2.5 billion pound level for the first time in 1992. By nonwoven type, application distribution was as follows: The majority of card/resinbond and card/thermalbond fabrics went into coverstock, while interlinings, wipes, and carrier sheets accounted for most of the remainder. Interlinings were one of the largest growing markets for nonwoven fabrics with 40 million pounds of fiber going to meet interlinings demand in 1995, according to Dlemson's School of Textiles, Giber & Polymer Science.

More than half of the highloft volume was used in furniture and sleeping applications. Filtration, apparel, insulation, healthcare, and geotextile products accounted for most of the remainder. Stitchbond fabrics were used in bedding, shoes, and a variety of coated products. Automotive trim and geotextiles accounted for 50 to 60 percent of needlepunch fabrics.

As much as two-thirds of spunlace fabrics were used in medical products. Medical product applications also accounted for about one-third of wet laid nonwovens.

Most bonded pulp fabrics were used as wipes or absorbent components. The largest yardage applications for spunbonds was coverstock. About half of meltblown nonwoven roll goods were used in filtration and medical applications. Porous film applications included coverstock, medical products, and laminating media. Nonwoven hybrids were used in absorbent products, wipes, filtration, and barrier applications.

Current Conditions

In the late 1990s the greatest amounts of goods shipped in this category were manufactured in North Carolina ($635 million), South Carolina ($433 million), and Tennessee ($337 million). Georgia, Wisconsin, and Virginia were also major producers.

The U.S. Census Bureau reported that 83 establishments made goods in this category as their primary products in the late 1990s. In 2000, those businesses shipped $4.7 billion worth of merchandise and employed 22,519 people, including 17,444 production workers who earned an average hourly wage of $14.62.

Industry Leaders

One of the largest companies whose primary product was nonwoven fabrics was Polymer Group Inc. (North Charleston, South Carolina) with 3,800 employees and sales of $802.9 million in 1998. Other industry leaders included Reemay Inc. (Old Hickory, Tennessee) with 600 employees and sales of $180 million; Veratec (Walpole, Massachusetts) with 1,200 employees and sales of $140 million; FiberTech Group Inc. (Landisville, New Jersey) with 220 employees and sales of $70 million; and National Nonwovens (Easthampton, Massachusetts) with 350 employees and sales of $32 million.

Further Reading

Brookstein, David. "U.S. Textiles Has Global Opportunities." Textile World, February 1997.

"DAMA Pilot Project Under Way." Textile World, October 1996.

Morrissey, James A. "Textile Firms Turn Trash to Treasure." Textile World, February 1997.

"Nafta Boosts U.S. Textiles." Textile World, January 1997.

Richard, Robert. "Market Outlook." Textile World, March 1996.

Rozelle, Walter. "Business Outlook." Textile World, March 1996.

——. "Nonwovens: Growth in New and Established Markets." Textile World, August 1996.

United States Census Bureau. "Statistics for Industries and Industry Groups: 2000." Annual Survey of Manufacturers. February 2002. Available from http://www.census.gov .

U.S. Department of Commerce. Census Bureau. 1997 Economic Census. Washington, D.C.: GPO, 1999. Available from http://www.census.gov/prod/ec97/97m3132d.pdf .



User Contributions:

Comment about this article, ask questions, or add new information about this topic:

CAPTCHA