SIC 2759

This industry classification is comprised of diverse establishments involved in commercial or custom-job printing not categorized elsewhere. Examples of products include newspapers and periodicals printed on behalf of publishers, engraved announcements, circulars, maps, tags and labels, directories, stock certificates, and currency. Procedures include screen printing, flexography, letterpress, digital printing, embossing, engraving, debossing, and thermography on substrates such as paper or plastic, but not textile. For information on commercial lithographic printing, see SIC 2752. For commercial gravure printing, see SIC 2754.

NAICS Code(s)

323112 (Commercial Flexograph Printing)

323113 (Commercial Screen Printing)

323114 (Quick Printing)

323115 (Digital Printing)

323119 (Other Commercial Printing)

Industry Snapshot

In 2001, shipments for the other commercial printing industry totaled $3.3 billion. Nearly 35,200 people were employed in the industry in 2000; of this total, 24,234 were production workers earning an average hourly wage of $13.29.

General job letterpress printing accounted for the largest share of this industry with shipments of $896.2 million in 2001. This sector was followed by label and wrapper letterpress printing with shipments of $596 million in 2001. A great deal of excitement was generated in the late 1990s by an emerging technology that relied solely on an electrochemical reaction to produce an image. This dynamic plateless and filmless process still had no firm nomenclature in early 1997, but one of the developing companies, Elcorsy Technology of Montreal, registered the name "elcography." Images could be changed or manipulated in real-time, while the press was

SIC 2759 Commercial Printing, Not Elsewhere Classified

still running. A memory buffer in the system allowed another job to be "moved into line" while the press was still printing a previous piece. The transition from job to job was accomplished seamlessly, with no need to recalibrate the press. Elcorsy sold its first elcography press, dubbed the ELCO 400, in 2001.

Organization and Structure

Letterpress and flexography are two common relief-printing methods. In relief printing, plates are cast or engraved to produce a raised image. The image is transferred by applying ink to the plate's surface and pressing it against paper or other substrates. Letterpress and flexographic technologies are similar, except that letterpress plates are made from metal and flexographic plates are made from rubber or photopolymer materials. As a result of its different plate composition, flexographic processes require special inks to avoid plate damage.

Screen printing (sometimes called porous printing or silk screening) employs a screen stencil. The image area is left open and nonimage areas are sealed using a sub-stance called "resist." Ink is applied to the screen and forced through its mesh onto paper or other substrates such as glass, plastics, and metal (including highway signs). Screen printing is commonly used for limited quantity outdoor posters such as billboards and point-of-purchase advertising displays. Screen printing is unique in that it allows printing onto uneven, oddly shaped, or extremely large substrates.

Thermography, also called raised printing, is used primarily for business cards, social invitations, and stationery. The raised effect is achieved by applying a colorless resin powder to the wet ink. The powder then assumes the color of the underlying ink and, when heated, it bubbles and bonds to the paper. Some printers use pearlescent and glitter powders to create special effects.

Background and Development

Human interest in making multiple copies of art and documents dates back many centuries. The Chinese, credited with the invention of paper, designed a kind of wooden movable type based on Chinese characters. Modern print methods, however, trace their beginnings back to the early 1400s when Johannes Gutenberg, a German publisher, developed movable metal type based on alphabetic characters. Gutenberg created molds for individual letters and cast them using a metal alloy made of lead, antimony, and tin. He hand assembled text, letter by letter, from pieces of type which were kept in a special "type case," with compartments for each letter, accent mark, and punctuation mark. To print, Gutenberg locked the type in a frame and placed the frame in a fixed position on a hand-operated wooden press. He spread ink made of soot and linseed oil on the surface of the type and pressed paper against it with a movable flat platen.

Wilhelm Haas, a Swiss typemaker, developed a metal hand press in 1787. Haas's press produced higher quality impressions than previously existing wooden presses. Further print improvements came during the early 1800s, when flat platens were replaced with steam-driven "impression cylinders." Because an impression cylinder rolled over a plate, it created even pressure across the entire surface and required less energy to operate. The first press to replace its flat platen with a metal cylinder was constructed in the United States by Richard Hoe in 1844.

A major innovation in typesetting technology occurred in 1884 when Ottmar Mergenthaler, a German immigrant to the United States, invented the Linotype machine. It operated by casting lines of type rather than individual letters. A Linotype machine stocked engraved letter dies in a storage area. The letters were released by typing on a keyboard. The machine ordered them, along with punctuation marks and spaces, into entire lines that could then be cast into metal bars. After lines were cast, the individual letters were routed back into storage for future use. The metal bars of type were used to make printing plates. Prior to the invention of the Linotype machine, typesetters could set approximately 1,400 characters per hour. A Linotype machine could set 6,000 characters per hour.

Other typesetting refinements included the Monotype machine, which was invented in 1897. The Monotype machine produced a perforated paper tape to control typecasting equipment. Renee Higonnet and Louis Moyroud developed photographic typesetting techniques during the 1940s. During the 1950s, computer technology was first employed. Further progress over the next several decades brought additional improvements in typesetting capabilities through the advancement of Optical Character Recognition and digital scanning. Prior to the development of offset lithography during the early twentieth century, letterpress was the most common form of printing in the United States and other developed nations. Even during the latter twentieth century, it remained the most popular printing method in economically developing nations.

Because of advances in offset lithography, some predicted that letterpress and flexography ("flexo") would fall into disuse. Enhanced technologies emerged, however, and brought increased interest in flexography. A 1992 article in Graphic Arts Monthly claimed that nearly all telephone directories and full-color newspaper comics were being printed by flexography and that the volume of regular newspaper sections printed by flexography had doubled within the previous few years. The report anticipated that the future availability of better paper grades and improved inks would also bring increased use among magazine printers.

The flexo trend among newspapers continued into the mid-1990s because flexo continued to offer several advantages over other printing methods. Those advantages included water-based, environmentally friendly inks that did not rub off, brighter colors, an enhanced ability to print on light paper stocks, and competitive make-ready time. According to Dr. Gregory D'Amico, the publisher of Flexo Today who was quoted in a 1997 issue of GATF World, nearly 47 daily North American newspapers are printed at least partially with flexography, and another 75 are poised to begin flexographic production. The Pittsburgh Post-Gazette, for example, began flexo printing in 1996. Quoted in Flexo Today, Robert Higdon, general manager of the newspaper, said they made the switch because of environmental impact issues, ease of production, and quality.

Screen printers also benefited from four-color-process work refinements, computerized design, increased press speeds, and environmentally responsive improvements. In anticipation of governmental regulations mandating cuts in solvent use, screen printers began turning to water-based inks cured with ultraviolet (UV) light. Traditional inks contained solvents to aid in drying; UV inks were dried with UV light.

According to American Printer, the screen printing industry was previously a secretive and "unwieldy group of individualistic entrepreneurs." Screen printers put images on everything from highway signs to pens and computer components. The market's four leading categories were decals and labels, electronic components, point-of-purchase displays, and signage.

To meet future challenges, the Screen Printing Association International, headquartered in Fairfax, Virginia, established the Screen Printing Technical Foundation in 1985. The nonprofit foundation was charged with the responsibility of developing guidelines, testing methods, and uniform practices. Specific areas under study included ink opacity, weather exposure, process colors, ink-drying techniques, and ways to eliminate moiree, a problem pattern caused by improper screen alignment. Screen printers hoped that standardization would help the process become more conventional and result in increased sales.

In the mid-1990s, a new kind of printing technology emerged that allowed digital files to be uploaded into the memory of an elcographic press. No film and no plates were used; rather, the image in the memory was translated into a series of electrical pulses. A special ink—a waterbase with pigment polymers and salts to enhance conductivity—coagulated in response to the pulses, and was cold-offset onto the paper. This new process was first utilized in short-run, high-speed markets, and industry prognosticators expected it to grow quickly into the high-speed publishing arena.

Diversification in the late 1990s in the industry was driven by customer demand as well as the economic climate. Commercial printers found themselves offering additional services including database management, facilities management, Web site design, and production of CD-ROMs. Industry establishments planned to diversify using a number of strategies, including offering all services in-house, partnering, or merging/acquiring other companies.

Current Conditions

Several segments exist within this industry, the largest of which is other general job letterpress printing. Shipments in this segment accounted for 27 percent of total industry shipments in 2001. Label and wrapper letterpress printing accounted for 18 percent; engraving, 9 percent; advertising letterpress printing, 5 percent; and catalog and directory letter press printing, 1.6 percent. Magazine and periodical letterpress printing and financial and legal letterpress printing both accounted for less than 1 percent of total industry shipments in 2001. Other commercial printing, not specified by kind, accounted for 38.5 percent of shipments.

An emerging global economic crisis slowed industry expectations during 1999. When the booming domestic economy also began to slow in 2000, printers throughout the United States felt the impact. Between 2000 and 2001, the value of shipments in the following industry segments declined: magazine and periodical letterpress printing; financial and legal letterpress printing; advertising letter-press printing; other general job letterpress printing; and engraving. In fact, the only sectors that recorded shipment increases in 2001 were label and wrapper letterpress printers, whose shipments remained well below late 1990s levels despite a slight gain in 2001, and catalog and directory letterpress printers, who had realized significant gains in the value of shipments since 1997.


In 2000, this industry employed 35,204 people. Of this total, 68.8 percent worked in production and earned an average hourly wage of $13.29. Total payroll costs in 2000 reached $994 million, compared to $902 million in 1997.

Industry Leaders

One of the largest organizations in the industry was the Deluxe Corporation. Deluxe was the largest check printer in the United States at the end of the 1990s, with more than half the market share. Through its divisions, Deluxe provides short-run computer forms, business forms, electronic tax filing services, and screen printed promotional items like pens and coffee mugs. Deluxe's subsidiary, Current, Inc., is the nation's largest direct-mail marketer of specialty products. In the late 1990s, Deluxe divested of its specialty paper business in order to build its financial services. In 2003, Deluxe's sales fell 3.3 percent to $1.2 billion. The firm employed 5,805 workers that year. The company planned expansion overseas.

The American Banknote Corporation, formerly the United States Banknote Corporation, was one of the largest security printers in the world. In 2003, the company reported sales of $222 million, reflecting a 10 percent increase over the previous year. In 1993, the company had expanded into Brazil, and in subsequent years the ABN-Brazil division accounted for 38 percent of the company's sales. ABN produced a wide variety of security items for corporate and commercial customers. These included products such as stock and bond certificates, travelers' checks, gift certificates, promotional coupons, dividend checks, union benefit stamps, certificates of deposit, and motor vehicle certificates of origin. ABN also supplied certificates for the emerging stock and bond exchanges in Eastern Europe and some of the former Soviet republics. In 1994, the company lost the annual U.S. postage stamp contract. During the 1990s, MasterCard, VISA, Discover, and Europay all carried a holograph made by ABN. At the beginning of the twenty-first century, ABN remained under investigation by the Securities Exchange Commission for alleged misrepresentation of finances by its former American Bank Note Holographics unit. About 75 percent of its sales came from overseas markets.

One of ABN's fastest growing products was currency printed for foreign governments. The company's customers included Lithuania, Estonia, Malaysia, Haiti, and Venezuela. Under normal usage, paper currency is generally replaced after approximately 15 months in circulation. However, the political turmoil experienced around the globe during the early 1990s resulted in more frequent changes. Changing political regimes caused some nations to redesign their money, newly independent countries sought to establish their own national currency, and countries experiencing rapid inflation required increased amounts of currency and changes in its denominational units.

Research and Technology

The entire commercial printing industry has relied on continuously improving technology to remain competitive. One area under study during the late 1980s and early 1990s, was the development of better flexographic inks containing higher levels of pigment solids to improve drying and color density. According to an April 2003 issue of Ink World this research had paid off by the early 2000s. "UV flexo inks are increasingly popular in flexible packaging and label applications, which are traditional markets for flexographic inks in general. In addition, some traditional litho printers are choosing UV flexo as a supplement to their litho business, such as in the folding carton and envelope printing industries."

Another significant technological stride in flexography surrounded direct-to-plate (DTP) flexo technology, which was fully realized for the first time in 1996. The Illinois Decatur Herald & Review was the first of several newspapers to commercially use DTP in every section of the full-color newspaper. Other flexographers were moving toward DTP technology, which is advantageous because of time, resource, and environmental savings.

One recently discovered and unexpected environmental bonus for flexo is that a mixture of baking soda effectively cleans press rollers. Previous roller cleansers were hazardous to the environment, whereas the Environmental Protection Agency considers baking soda non-toxic. Printers also found that the baking soda mixture is gentle on the rubber composition rollers, and thus preserves the life of expensive equipment better than harsh cleaning agents.

In mid-1999, Fuji Film announced a new product line for the industry, including the Multi-Laser Imagesetter and the FinalProof digital halftone proofing system. According to Fuji, film-based production remained a viable and very workable part of the commercial printing process. The Multi-Laser Imagesetter complemented the Celix imagesetters and the Plate Jet 4 and 8 devices; the FinalProof digital halftone proofing system had the capability to be retrofitted to Hewlett Packard imagers to create two-sided digital bluelines. One graphic arts industry expert quoted in Graphics Arts Monthly expected film use to continue in the industry until at least 2010.

Further Reading

"American Banknote Corporation," 20 March 2000. Available from .

Castegnier, Pierre. "Elcography: a New Digital Printing Alternative." GATF World, January/February 1997.

"Deluxe Corporation," 20 March 2000. Available from .

"Following 17 Years of Research and Development, Elcorsy Announced It Has Sold the First Production Model of Its ELCO 400 Press, Based on Elcography Technology," Printing Impressions, August 2001.

Massa, Michelle. "Great Balls of Fire: The U.S. Economy Continues to Shine Despite Looming Clouds Overhead." Graphic Arts Monthly, June 1998.

Paparozzi, Andrew D. "Slow: Curves Ahead." American Printer, December 1998.

"Trends in UV Flexographic Ink." Ink World, April 2003.

U.S. Census Bureau. "Statistics for Industry Groups and Industries: 2000." February 2002. Available from .

—— "Value of Shipment for Product Classes: 2001 and Earlier Years." December 2002. Available from .

Other articles you might like:

Follow Founder
on our Forum or Twitter

User Contributions:

Comment about this article, ask questions, or add new information about this topic: