SIC 2821
PLASTIC MATERIALS AND RESINS



The plastic materials and resins industry is comprised of companies primarily engaged in manufacturing various resins and plastics for sale to other industries that create plastic sheets, rods, films, and other products. Information on related products can be found under SIC 2822: Synthetic Rubber, SIC 2823: Cellulose Man-made Fibers, and SIC 2824: Organic Fibers—Noncellulosic.

NAICS Code(s)

325211 (Plastic Material and Resin Manufacturing)

Industry Snapshot

Synthetic plastic was invented late in the eighteenth century and did not reach widespread use in the United States until the 1900s. Swift advances in chemical and manufacturing technologies during the twentieth century, however, made plastic one of America's most important manufacturing materials. In 2001 the U.S. produced 101.1 million pounds of resins. Most important uses of plastics include packaging (22.6 million pounds; 29 percent of all thermoplastic resins), building and construction (13.2 million pounds; 17 percent), and consumer and institutional uses (11.2 million pounds; 12 percent).

The value of shipments in 2001 totaled $45.5 billion. According to The Society of the Plastics Industry, Inc., plastics products is the fourth largest manufacturing segment in the United States, behind motor vehicles, electronics, and petroleum refining. Approximately 21,000 companies manufacture plastic products or plastics raw materials in the United States. Production facilities are predominately in California and the Midwest (Ohio, Michigan, and Illinois), with the top 10 states accounting for 60 percent of all plastics employment.

During the early 2000s the plastics industry was suffering from the effects of a sluggish economy. Total resin sales in 2001 fell by 3.8 percent from the previous year. High natural gas prices drove production costs up, and a weak economy drove demand down: a lethal combination for the industry.

Organization and Structure

Plastics provide an important alternative to natural materials for a plethora of applications. One of the most important distinguishing factors between plastic and other materials is plastic's ability to "creep" under load, or gradually stretch or flow when subjected to stress. While metals and ceramics exhibit this property as well, they do so only at much higher temperatures. Plastics also resist erosion and do not require a coating to protect them against inorganic acids, bases, and water or salt solutions. Perhaps the greatest advantage that plastics offer, however, is their ability to be molded into any shape and to be processed to exhibit any of a massive number of physical characteristics.

Competition and Market Structure. The synthetic materials industry is considered a segment of the overall chemical industry; synthetic materials manufacturers represent about 20 percent. The plastics industry comprises about 70 percent of the entire synthetic materials industry, which also encompasses rubber and manmade fibers. Manufacturers produce about 500 different types of resins and compounds. Each of these products is available from various suppliers in multiple grades, each grade offering varying physical properties and prices.

Production. Plastics are giant polymers, or long-chain molecules that contain thousands of repeating molecular units. When combined with other ingredients called additives, the polymers can be shaped and molded under heat and pressure into a resin. Resins are produced through chemical processes that combine carbon with other elements such as oxygen, nitrogen, and hydrogen. Resin usually takes the form of pellets, flakes, granules, powder, or a syrupy liquid. Most resins are not used in their natural state, but are instead combined with other materials by mixing or melt-state blending. The end result is a plastic compound, still in the form of pellets, granules, or powder, that is ready to be delivered to a processor. There are two basic kinds of plastics: thermoplastics, which can be re-softened to their original condition by the application of heat; and thermosets, which cannot be resoftened. The production of thermoplastic resins surpasses the production of thermosetting resins by a ratio of about 8 or 9 to 1. Thermosetting resins include epoxy and polyester. Thermoplastic resins include polyethylene and polyvinyl chloride, more commonly known as PVC.

The physical properties of the final plastic product can be altered at various stages of the polymerization and production process. The most versatile method of varying properties is by compounding. With this method, additives—such as colorants, flame retardants, heat or light stabilizers, or lubricants—may be added to the resin to achieve a desired result. Fillers or reinforcement—such as glass fibers, particulate materials, or hollow glass spheres—may instead be added to the resin, as may other polymers, which form a polymer blend or alloy.

Plasticizers are the most common additives used to alter plastic resins. Plasticizers increase a resin's flexibility and are often used to make polyvinyl chloride resins used in construction products. Impact modifiers are an additive used to boost a plastic's resistance to stress. Similarly, antidixodiants retard the oxidation and breakdown of plastics, and heat stabilizing additives help resins to maintain their physical structure during processing. Light stabilizers filter out radiation that can cause a plastic to deteriorate as a result of exposure to sunlight, and flame retardants enable resins to resist combustion. Colorants are another major additive used in the compounding process.

Four major commercial divisions of plastic resins are manufactured. Commodity resins, which represent the bulk of industry production, are low-tech plastics available in standardized formulas from many companies throughout the world. Intermediate resins are generally considered more advanced and somewhat specialized in comparison to commodity resins. Similarly, engineering resins generally exhibit more advanced performance characteristics and are produced on a smaller scale than other types of resin. Finally, advanced resins are generally those most capable of withstanding impact and high heat, carrying loads, and resisting attacks by chemicals and solvents.

Thermoplastics. Thermoplastics accounted for about 88 percent of industry output in 1998. They solidify by cooling and may be remelted repeatedly to form new shapes. Examples of thermoplastic resins are polyethylene, polypropylene, and polystyrene. Polyethylene is the highest volume plastic, accounting for about 40 percent of thermoplastic production, and is used primarily to create packaging, though many consumer and institutional products are made from it as well. About 27 billion pounds of polyethylene were produced in 1998. Major manufacturers of this resin include Quantum Chemical, Union Carbide, and Dow Chemical Co.

Polyvinyl chloride (PVC) makes up the second largest share of the thermoplastics segment. It is used primarily to make gutters, pipes, siding, windows, and other products used by construction and building industries. About 14.5 billion pounds of PVC were shipped in 1998. Major producers include Occidental Petroleum, Shintech, and Formosa Plastics. Polypropylene, another thermoplastic, accounted for about 13.8 billion pounds of production in 1998. This resin is used mainly in the creation of fiber and filaments, as well as in the production of packaging and molded consumer products.

About 6.2 billion pounds of polystyrene, a fourth major thermoplastic product, were produced in 1998. This resin is used to make disposable packaging, furniture finishings, and miscellaneous consumer products. Other thermoplastics segments include polyamide resins, styrene-butadiene, and some polyesters.

Thermosets. Thermosets, the other division of the plastics industry, account for about 12 percent of output. Unlike thermoplastics, thermosets harden by chemical reaction, and cannot be melted and shaped after they are created. Thermosets are also considered the more mature and less dynamic segment of the industry.

Typical thermosets include phenolics, urea-formaldehyde resins, epoxies, and polyester. Phenolics, which account for over 50 percent of all thermoset production, are used principally for construction products. Such materials include plywood adhesives, insulation, laminates, moldings, and abrasives. Urea, the second largest segment of the thermoset division, is also used as an adhesive for plywood and particle board. Other uses of this resin include protective coatings and textile and paper treating and coating.

Thermoset polyesters are used to create plastics that are reinforced with glass fiber and other materials. They are also used to make various construction supplies such as boat and marine equipment, transportation products, and electronics. Epoxy is primarily used as a protective coating for metal goods, but is also used in multiple construction applications. In 1998, 639 million pounds of epoxy were produced.

Background and Development

The first plastic used in the United States was a natural material known as Keratin, which was made from animal hooves, horns, feathers, and hair. Keratin was used as a fabricating material to make lantern windows and other items as early as 1740. In the late 1800s, Americans copied a technique observed among Malayan natives, who molded a plastic made from gutta percha, or gum elastic, into knife handles and other articles. This technique had a variety of applications in the United States, from ocean cable insulation to billiard balls. Samuel Speck, regarded as the first American to mold plastics, helped to introduced shellac plastics in the 1850s. By then, different types of natural plastics were being used to produce such items as checkers, buttons, picture frames, and insulators.

"Parkesine," the first synthetic plastic, was invented in 1862 by Alexander Parkes, an Englishman. Recognizing the important plasticizing effect in the Parkesine production process, American John Wyatt renamed the substance celluloid in 1870 and was credited with originating the production of synthetic plastics in the United States. Celluloid, despite its inflammability, was used to make carriage and automobile windshields and motion picture film.

Dr. Baekland, also an American, invented the world's first moldable plastic material in 1909. Baekland's thermo-setting phenolformaldehyde resin provided a tremendous impetus for other inventors, who began developing molding techniques and adding resins to paints and varnishes. Baekland's resin, later called "bakelite," was also used in the electrical industry to make some of the first molded synthetic plastic components. The first colorless resin, urea-formaldehyde, was invented in 1918 and sold commercially in 1928.

Plastics research and development began to proliferate in the 1920s and 1930s. The Germans pioneered the creation of many new thermosetting resins, while Americans and several Europeans made significant contributions in the area of plastic molding and extrusion machines, and later in the advancement of thermoplastics. During World War II, the plastics industry realized significant advances, as warring nations hurried to develop new and better materials for their war machines.

Postwar economic expansion augmented the development of the plastics industry. As demand for all types of consumer, commercial, and institutional products soared, plastics producers scrambled to keep pace with expanding markets. Successive breakthroughs in chemical technology and production techniques opened up vast new markets for manufacturers. Most importantly, however, producers in other industries began to realize the advantages of substituting plastics for more expensive, less flexible, natural materials. By the 1970s the plastics industry was shipping more than $10 billion worth of resins per year. U.S. producers also controlled a major share of aggregate world exports.

Sales of all types of plastic resins continued to multiply throughout much of the 1980s. A variety of factors, such as excess capacity and high petroleum costs, contributed to brief periods of slow production or decreased profits. In general, however, industry participants benefited from several factors. Growth in exports, for example, contributed to the industry's success; although U.S. chemical firms lost world market share, exports grew from $7.0 billion in 1992 to nearly $14.0 billion in 1999. Imports also grew during these years from $2.0 billion in 1992 to $5.6 billion in 1999.

New additives and plastic alloys also increased in demand, opening entirely new markets for resins and prompting other industries to substitute plastic for more expensive, less flexible organic products. Furthermore, as many segments of the industry matured and became more competitive, falling prices allowed plastics to penetrate a number of metal, glass, and wood markets. Reinforcing downward pricing pressures were massive industry investments in research, development, and more efficient production facilities, allowing producers to remain extremely competitive domestically.

Between 1992 and 1999, plastic industry shipments grew at a slow but steady pace from $31.6 billion to $47.7 billion, with predictions of $47.6 billion in shipments in 2000. In percentages, the growth rate for the plastic industry was 6.1 percent between 1992 and 1996; 9.5 percent between 1996 and 1997; 4.5 percent between 1997 and 1998; and 4 percent between 1998 and 1999. Industry employment also grew at a slow but steady pace from 54,000 in 1982 to almost 70,000 in 1995. In 1996, however, employment had sunk to 58,600, a decade low. Nevertheless this figure was predicted to climb back to 69,500 by 2000.

Much of the demand for plastics comes from the packaging and consumer markets, two sectors that, according to Standard & Poor's, are fairly resistant to recessionary pressures. In fact, in 1997 the largest single market for plastics was packaging products such as bags, bottles, and food containers. These products alone consumed 26 percent of all plastics according to the SPI. Building and construction was the second largest market with structural materials, pipes, conduits, and fittings accounting for 21 percent of 1997 plastics production. Consumer and institutional goods such as kitchen wares, toys, sporting goods, and medical products accounted for 13 percent; transportation for 5 percent; furniture and furnishings and electronic appliances and components each accounted for 4 percent; exports for 12 percent; adhesives, inks, and coatings for 2 percent; and all other uses for 13 percent.

Thermosets, however, are not quite as recession resistant as thermoplastics. In 1997, some 66 percent of thermoset production was consumed by the building and construction industry, an industry that is highly cyclical.

Many industry analysts predicted 1999 and 2000 to be a good years for the plastics materials and resins industry following a worldwide slump in resin prices in 1998. The 1998 slump in resin prices was a direct result of the Asian economic crisis. Asian plastics producers, in an effort to raise cash, flooded the market with exports. These actions, however, resulted in a slump in prices due to oversupply. Brazil, which also faced its own economic crisis in 1998, saw a 13 to 17 percent drop in the price of its resins. Depressed prices carried over into early 1999, with Modern Plastics' Robert Colvin predicting that a buyer's market would continue well into the year, especially for polyethylene.

Standard & Poor's, however, noted that production rose in the first four months of 1999, with most resins reporting gains with the exception of PCV prices, which remained close to 1998 levels. Howard R. Blum, vicepresident of The Catalyst Group, was quoted by Chemical Market Reporter as foreseeing 1998's 106 million metric ton global thermoplastic market growing at an annual rate of 3.2 percent and thus reaching 156 million metric tons by 2010. Blum predicted that the 2010 thermoplastic market would consume: 91 million tons of polyolefins; 34 million tons of PVC and styrenics; 26 million tons of PET and nylon fibers; and 15 million tons of ETPs. European Chemical News was also optimistic in its forecast of 9 percent growth between 1998 and 1999, with polymer demand in Romania, the Czech Republic, Slovakia, Hungary, and Poland reaching 2.5 million tons in 1999.

Purchasing predicted price rises in the year 2000 for many basic products including plastics. Quoting a study by Thinking Cap Solutions, Purchasing predicted a price jump of 5.5 percent in 2000 following price drops of 8.8 percent in 1998 and 3.2 percent in 1999.

The 1990s also witnessed compression and consolidation in the U.S. plastics industry. Standard & Poor's quoted Impact Marketing Consultants as estimating that there were only 17 large U.S. producers of polyethylene and 14 large U.S. producers of polypropylene in 1995. They also noted that in 1996, the number of U.S. polystyrene producers dropped from eight to six when two producers sold out to competitors. Other important mergers and buyouts included: the formation of the Equistar Chemical partnership formed by the partial merger of Lyondell Chemical and Millennium Chemicals, Inc., which made Equistar the largest producer of ethylene and polyethylene in North America, with 1998 revenues of $4.4 billion; the acquisition of Rexene Corp. by Huntsman for $60 million in 1997; the partial merger of Geon Co. and Occidental Petroleum in 1999, which formed Oxy Vinyls L.P., a move expected to provide cost savings of $80 million by 2000; and the merger of Amoco Corp. with British Petroleum and the pending merger of Exxon Corp. and Mobil. BP Amoco reported chemical sales of $9.7 billion in 1998.

Current Conditions

The volatility of natural gas prices have wreaked havoc on the plastics industry in recent years. Between 1998 and 2001, natural gas prices doubled—and for a brief time, quintupled—and then returned to 1998 levels. Considered a flux, prices once again skyrocketed in early 2003, sending waves of panic through the industry. When, in March 2003, natural gas prices spiked briefly to $9 mmbtu (compared to $2.40 mmbtu a year earlier), a Huntsman Corp. official lamented to Chemical Market Reporter, "The problem facing the polymers and petrochemicals industry in the U.S. is unprecedented. Rome is burning."

At the same time that production costs were increasing, demand slackened. Plastics companies fulfilled contracts with price protection built in, but warned that such protection would not be offered in the future, and energy surcharges will likely be forthcoming. An estimated 20 percent of plastics companies were losing money, and another 60 percent were just holding on in the first years of the 2000s. Price hikes were announced in May 2003, but incremental increases have simply stemmed the flow of losses rather than increased the profit margin.

All is not lost of the industry, however. Although wholesale de-stocking shook the plastics industry during the economically slow first years of the decade, causing a waning of demand, orders began picking up during 2002 and into 2003 as customers began restocking to prepare for the return of consumer activity. Once the economy recovers more fully and natural gas prices stabilize, the plastics industry should find firmer footing. Plastics use is expected to grow substantially in the motor vehicle and medical device markets.

Industry Leaders

The largest U.S. company actively producing chemicals, plastics, hydrocarbons, and agricultural and specialty products in 2002 was Dow Chemical Company of Midland, Michigan. This diversified company employed nearly 50,000 in 2002 and generated over $27.6 billion in sales. E.I. du Pont de Nemours and Co., based in Wilmington, Delaware, reported 2002 revenues of $24 billion and employed 77,000. Honeywell International, Inc.'s plastics division was helped by merging with Allied Signal, another leader in the industry during the late 1990s. Honeywell posted total revenues of $22.3 billion in 2002 and employed 108,000.

Workforce

In 2001, about 58,000 were employed in the U.S. plastics industry, including 40,000 production workers. Total compensation was $1.99 billion and the average hourly wage was $24.99. Total employment dropped by approximately 5 percent since 1997.

Despite these relatively flat employment figures, the plastics industry is expected to offer steady opportunities for highly trained individuals, especially in technical fields. The first production step in making plastic products is the preparing and mixing of resins with other ingredients to form powders. These tasks are usually performed by drier operators, blenders, and oven tenders. Molding machine operators are then responsible for setting and monitoring heat and pressure gauges on the molding machinery and pouring the powder into the machines. The operators then remove the molded plastic products from the machines and send them to finishing rooms where drill press operators, grinders, and buffers finish the products. Plastics regrinders are responsible for grinding scrap plastic for recycling.

The plastics industry remains a major supplier of high-paying jobs for those specializing in technical fields, particularly chemists, chemical engineers, and plastics engineers. In 2001 chemical engineers earned a mean annual salary of $72,070; chemists, $66,750; and chemical technicians, $44,510. General and operations managers earned nearly $100,000 annually.

America and the World

The U.S. plastics industry, by far the largest and most advanced in the world, was heavily dependent on exports throughout the 1990s. In 1995 the U.S. plastics industry exported $10.3 billion worth of products. This figure was expected to climb to $13.9 billion in 1999. Import figures are $4 billion and $5.6 billion, respectively. The SPI estimates that exports were responsible for 118,000 industry jobs in 1996, up 22 percent from 1992. The society also notes that the U.S. plastics industry had a $5.5 billion trade surplus in 1996, a 34 percent increase over 1992. The strongest export sector of the plastics industry is plastics raw materials, which had a $6.3 billion trade surplus in 1996. Plastics products had a positive trade balance of $659 million. Molds and machinery, however, showed a deficit. The U.S. Department of Commerce predicted that the United States, Japan, and western Europe will continue to dominate in the production and the consumption of plastics materials and products, although the markets in both Latin America and Asia will grow at a faster rate. This will be especially true in Brazil, China, and Mexico. Growth in Thailand, South Korea, and other fast-developing areas of southeast Asia is expected to be slow as a result of the 1998 Asian economic crisis, but then rebound by 2003.

There are, however, both short-and long-term export challenges for the U.S. plastics industry. Still prevalent currency problems in Asia are expected to dampen the demand for U.S. exports, and export growth was expected to be slow throughout 1999. Many Asian countries, especially South Korea and China, are expanding their plastics manufacturing capacity, which will lessen their demands for imports while creating global competition for U.S. firms.

Writing in Plastics Engineering, Francoise Pardos of Pardos Marketing in Orgeval, France predicts that by 2007, the global market for solid polymers will reach 210 million metric tons and climb to 400 million metric tons by 2020. These figures reflect a 7.8 percent annual growth rate between 1960 and 1997 (8 million metric tons to 125 million metric tons, respectively) and a 5 percent annual growth rate between 1997 and 2020. Pardos draws a correlation between per capita average income and per capita consumption of plastics by major countries and regions of the world. In this analysis, consumption refers to raw plastics consumed by converting industries. Pardos believes that as a general rule of thumb, an average GNP of US$15,000 per capita or higher converts to a per capita consumption of 60 kilograms of plastics (about 132 pounds), while an average GNP of US$2,500 or less would mean an average plastics consumption of less than 15 kilograms (about 33 pounds) per capita.

Western Europe and the United States each account for the consumption of about 30 million metric tons a year of plastics in solid form. Japan consumes just under 15 million metric tons a year. These three regions/countries thus account for about two-thirds of worldwide plastics consumption. This percentage of plastics consumption according to Pardos, however, is rapidly decreasing. The most vigorous rate of growth of plastics consumption has been occurring in Asia, especially prior to the 1997-1998 economic crisis. Pardos predicted that by 2020 western Europe, Japan, and the United States will account for 40 percent of global plastic consumption as compared to 75 percent in 1974, 70 percent in 1985, 62 percent in 1997, and an estimated 52 percent in 2007.

"Developing countries represent areas of promising opportunities for plastics application," says Pardos. In these developing countries the author sees especially strong growth in four market sectors. Traditional packaging materials such as metal, glass, paper, and wood will be replaced by plastics. He notes that Latin American consumption of PET bottles for carbonated soft drinks and water has a staggering annual average growth rate of 20 percent, which translated in 1997 to 500,000 metric tons, or nearly 50 percent of the similar European market. Pardos also sees strong growth in applications such as building and construction, automotive parts, and agricultural films. "The future demand for plastics is expected to be fueled by the continuing requirement in developed countries—where growth is slower, but production is based upon very large tonnage—and buildup of demand from developing countries." In conclusion, Pardos said: "Imaginative and creative applications of new polymers, blends, and combinations can play a part in solving some of the most urgent problems of developing countries."

Research and Technology

Technology and performance are keywords in the plastics industry's search for new markets and the maintenance of existing ones. "It's an exciting time in the business right now," claims Daniel DeLegge, technical director of resins for Lawter International. Lawter, which was recently acquired by Eastman Chemical, is driven by environmental concerns, cost containment, and performance, especially the performance of inks under the new demands of high-speed, high-pressure, and high-temperature printing machine technologies. "We are looking for resins that will handle the demands of high-speed presses," says DeLegge. To meet these demands Lawter has come up with a new series of OMNI-REZ resins that are based on a hybrid technology of phenolics and hydrocarbons.

Plastics technology also continues to play an increasingly important role in heavy industry. DaimlerChrysler engineers, for example, have developed a lightweight, fully recyclable thermoplastic that will make its debut as a hardtop on the 2001 Jeep Wrangler. The new plastic weighs 30 percent less than comparable use plastics, costs 10 percent less, and doesn't require painting, thus saving $75 million in paint shop emissions-control equipment alone. Paint is injected directly into the plastic before taking on its final shape as a door or hardtop. As a result, the new auto part won't chip, scratch, or rust. The result, however, is a matte finish, not a glossy one. "We are on the cusp of revolutionizing the vehicle manufacturing process," says Al Power, president and chief executive officer of Decoma International, a bumper fascia supplier and project collaborator. The new hardtops will be made of injection-molded thermoplastic at Husky Injection Molding Systems of Novi, Michigan.

Further Reading

American Plastics Council. Monthly Resin Report, 31 March 2002. Available from http://www.americanplasticscouncil.org .

——. Year in Review, 2002. Available from http://www.americanplasticscouncil.org .

Campbell, Paul D. Q. "Environmental, Cost and Performance Factors Drive Resin Developments in 1999." American Ink Maker, October 1999, 131+.

Career Information Center. 7th ed., New York: Macmillan Reference USA, 1999.

"DaimlerChrysler AG's (Germany) Engineers and Its North American Suppliers Jointly Develop High-Tech Thermoplastic." Detroit Free Press, 2 November 1999.

"Global Engineering Thermoplastics Consumption Will Total 2.2 Bil Lb/Yr by 2000." Appliance, September 1999.

"Goodbye Deflation! Prices Forecast to Rise in 2000." Purchasing, 21 October 1999, 28-30.

Hoffman, John. "Polypropylene Demand Remains Strong and Prices Continue to Rise." Chemical Market Reporter, 9 September 2002, 1-2.

——. "Surging Oil and Natural Gas Trigger Panic and Change in Plastics Industry." Chemical Market Reporter, 10 March 2003, 1-3.

Johnson, Clint. "Industry Proves Adaptable to Change in Manufacturing Downturn Plastics." Plant Sites & Parks, September 2002, 74-80.

Mapleston, Peter. "Generation Y Speeds New Plastics Use in Cars." Modern Plastics, January 2003, 53-56.

Miel, Rhoda. "Specialists Profit While Most Plastics Firm Struggle." Crain's Detroit Business, 9 September 2002, 12.

Pardos, Francoise. "Forecast for the World Plastics Industry to 2020." Plastics Engineering, November 1999, 53-57.

"Plastics Making Inroads." Official Board Markets, 21 December 2002, 1-2.

Plastics Material and Resin Manufacturing: 1997 Economic Census-Manufacturing-Industry Series. Washington: GPO, 1999. Available from http://www.census.gov .

"Polymers Set to Grow By 9 Percent." European Chemical News, 8 November 1999, 11.

"Report From Dusseldorf: K'98 Show News (Plastics Technology Fair)." Plastics Technology, January 1999, 44-60.

"Resin Supply At the Crossroads." Modern Plastics. January 1999, 49-72.

Richards, Don. "World Thermoplastics Market Appears Set for Lasting Growth." Chemical Market Reporter, 11 August 1999.

Roberts, Mike. "Plastics from Petroleum Shape Modern Life." Chemical Week, 18 September 2002, SS118-9.

Sherman, Lilli Manolis, and Debbie Galante Block. "Resin Prices are Soaring." Plastics Technology, April 2003, 70-72.

Society of the Plastics Industry. SPI: The Society of the Plastics Industry Trade Association. Washington: Society of the Plastics Industry, 1999. Available from http://www.plasticsindustry.org .

Standard & Poor's Corp. Chemicals: Basic. New York: Industry Surveys, 1999.

Stewart, Richard. "Medical Plastics." Plastics Engineering, April 2003, 40-49.

U.S. Industry & Trade Outlook '99. New York: McGraw-Hill, 1999.



User Contributions:

1
WUISY
Report this comment as inappropriate
Aug 18, 2008 @ 3:15 pm
Here is some interesting information for market conditions paper.

Comment about this article, ask questions, or add new information about this topic:

CAPTCHA